Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(42): 95931-95944, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37561302

RESUMO

With continued anthropogenic inputs of nitrogen (N) into the environment, non-point source N pollutants produced in winter cannot be ignored. As the water-soil interface zones, riparian wetlands play important roles in intercepting and buffering N pollutants. However, winter has the antagonistic effect on the N removal. Substrate improvement has been suggested as a strategy to optimize wetland performance and there remain many uncertainties about the inner mechanism. This study explores the effects of substrate improvement on N removal in winter and rhizospheric crosstalk between reed (Phragmites australis) and microbes in subtropical riparian reed wetlands. The rates of wetland N removal in winter, root metabolite profiles, and rhizosphere soil microbial community compositions were determined following the addition of different substrates (gravel, gravel + biochar, ceramsite + biochar, and modified ceramsite + biochar) to natural riparian soil. The results showed that the addition of different substrates to initial soil enhanced N removal from the microcosms in winter. Gravel addition increased NH4+-N removal by 8.3% (P < 0.05). Gravel + biochar addition increased both TN and NH4+-N removals by 8.9% (P < 0.05). The root metabolite characteristics and microbial community compositions showed some variations under different substrate additions compared to the initial soil. The three treatments involving biochar addition decreased lipid metabolites and enhanced the contents and variety of carbon sources in rhizosphere soil, while modified ceramsite + biochar addition treatment had a greater impact on the microbial community structure. There was evidence for a complex crosstalk between plants and microbes in the rhizosphere, and some rhizosphere metabolites were seen to be significantly correlated with the bacterial composition of the rhizospheric microbial community. These results highlighted the importance of rhizospheric crosstalk in regulating winter N removal in riparian reed wetland, provided a scientific reference for the protection and restoration of riparian reed areas and the prevention and control of non-point source pollution.


Assuntos
Poluentes Ambientais , Áreas Alagadas , Desnitrificação , Nitrogênio , Plantas , Poaceae , Solo
2.
Materials (Basel) ; 16(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37445170

RESUMO

This study explored the potential of granite stone powder (GSP) as a supplementary cementitious material (SCM). The 72 h early hydration process stages of GSP-mixed slurry were analyzed in depth, and the mechanical properties of manufactured sand concrete (MSC) mixed with GSP were investigated. Physical phase types, morphological characteristics, and pore structure evolution were investigated using an X-ray diffractometer, scanning electron microscope, and mercury intrusion approach (MIP). Atomic force microscopy was used to show the interface transition zone between aggregate and slurry in phase images, height images, and 3D images, allowing quantification of ITZ and slurry by calculating the roughness. Gray entropy analysis was used to evaluate the significance of the effect of pore size distribution parameters on mechanical strength, and the GSP-content-mechanical-strength gray model GM (1, 1) was established to predict mechanical strength. The results indicate that, compared with the reference group, the GSP cement slurry system exhibited a delayed hydration process acceleration rate, with a 1.04% increase in cumulative heat of hydration observed in the 5% test group and an 11.05% decrease in the 15% test group. Incorporating GSP in MSC led to decreased mechanical properties at all ages, with significant decay observed when incorporation ranged from 10% to 15%. Although the type of hydration products remained unchanged, there was a decrease in the number of C-S-H gels and gel pores, while large pores increased, resulting in increased porosity and roughness of the interface transition zone and slurry. Large pores (>1000 nm) were found to have the greatest influence on mechanical strength, with gray correlation above 0.86. The GM (1, 1) model yielded accurate predictions, showing good agreement with measured data and thus it can be identified as belonging to a high-precision prediction model category. These findings provide theoretical support and a reference for applying GSP as an SCM, laying the groundwork for data-based specification development.

3.
Materials (Basel) ; 16(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37176254

RESUMO

To obtain the magnesium oxychloride cement concrete (MOCC) ratio with excellent water resistance quickly and accurately, a BP neural network (BPNN) model with a topology structure of 4-10-2 was designed, and the PSO (particle swarm optimization), GWO (gray wolf optimization), and WOA (whale optimization algorithm) algorithms were used to optimize the model. The input layer parameters of the model above were n(MgO/MgCl2), Grade I fly ash, phosphoric acid (PA), and phosphate fertilizer (PF) content, and the output layer was the MOCC's compressive strength and softening coefficient. The model had a dataset of 144 groups, including 100 training set data, 22 verification set data, and 22 test set data. The results showed that the PSO-BPNN model had the highest predictive accuracy among the four models, with a mean R2 of 0.99, mean absolute error(MAE) of 0.52, mean absolute percentage error(MAPE) of 0.01, and root mean square error (RMSE) of 0.73 in predicting compressive strength, and a mean R2 of 0.99, MAE of 0.44, MAPE of 0.01, and RMSE of 0.62 in predicting the softening coefficient. The results showed that using the PSO-BPNN to predict the compressive strength and softening coefficient of MOCC is feasible and can provide theoretical guidance for designing the MOCC mix.

4.
Materials (Basel) ; 16(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36984401

RESUMO

The constant current accelerated corrosion test was used to study the durability of magnesium oxychloride-coated reinforced concrete (MOCRC) in order to solve the problem of MOCRC's durability. The relative dynamic elastic modulus was utilized as the failure threshold to evaluate the concrete durability, and the collected life data of concrete under different cover thickness were acquired. On the basis of the Gumbel distribution, the probability analysis can be used to study and foretell the life data. The results show that when the durability is evaluated by the relative mass and the relative dynamic modulus of elasticity, the durability of MOCRC with a larger protection layer thickness is better; the relative dynamic modulus of elasticity can better reflect the durability change in MOCRC than the relative mass. When the Gumbel distribution is used for durability analysis, the calculated value of the model and the life data have a relatively high degree of fit, which can provide a reference basis for the durability evaluation of concrete.

5.
Materials (Basel) ; 14(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34771853

RESUMO

With steel fiber and basalt fiber volume dosing serving as variation parameters, a total of 200 d cycles of acid rain corrosion cycle tests were conducted on fiber concrete in this study. We selected three durability evaluation parameters to assess the degree of damage deterioration on fiber concrete, used scanning electron microscopy, mercury intrusion porosimetry, and a dimensional microhardness meter to analyze the concrete micromorphology, and established a GM(1,1)-Markov model for life prediction of its durability. Results reveal that the acid rain environment is the most sensitive to the influence of the relative dynamic elastic modulus evaluation parameter, and concrete has specimens that show failure damage under this parameter evaluation. Incorporation of fibers can reduce the amount of corrosion products inside the concrete, decrease the proportion of harmful pores, optimize the mean pore-size, and significantly improve the resistance to acid rain attack. Concrete with 2% steel fiber and 0.1% basalt fiber by volume has the least change in durability damage, and the predicted service life by GM(1,1)-Markov model is 322 d.

6.
J Environ Manage ; 280: 111783, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33349513

RESUMO

Wetlands play an important role in reducing the impact of nitrogen pollution on natural aquatic environments. However, during the plant wilting period (winter) there will inevitably be a reduction in nitrogen removal from wetlands. Understanding optimum harvest time will allow the use of management practices to balance the trade-off between nitrogen removal and the sustainability of wetlands. In this study, we investigated wetland nitrogen removal and reed (Phragmites australis) nutrient responses for two years [first year: influent total nitrogen (TN) 17.6-34.7 mg L-1; second year: influent TN 3.2-10.0 mg L-1] to identify the optimal harvest time: before wilting, mid-wilting, or late wilting. Harvesting decreased wetland nitrogen removal in both years, with later harvest time producing a smaller decrease in TN and ammonium-nitrogen (NH4+-N) removal. In addition to harvest before wilting, aboveground reed harvest at mid-wilting harvested more nutrients [carbon (C) 7.9%, nitrogen (N) 46.6% and phosphorus (P) 43.6%] in the first year, while harvest at late wilting harvested more nutrients (C 4.9%, N 7.8% and P 24.1%) in the second year, although this was not statistically significant. The late wilting harvest caused fewer disturbances to root stoichiometric homeostasis in the first year, while mid-wilting harvest promoted root nutrient availability in the second year. In addition, redundancy analysis (RDA) showed that root stoichiometry was interrelated with wetland nitrogen removal. Our results suggest that optimal harvest time was late wilting on the basis of wetland nitrogen removal, or either mid- or late wilting according to reed nutrient response to influent nitrogen concentration in some years. Our results provide crucial information for winter wetlands management.


Assuntos
Nitrogênio , Áreas Alagadas , Desnitrificação , Nutrientes , Fósforo , Poaceae
7.
Materials (Basel) ; 12(19)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547168

RESUMO

With the increasing proportions of copper tailings of concrete in the Qinghai Salt Lake area of China, there arises the problem of corrosion of steel reinforcement in concrete structures. In this study, we determine the corrosion rate (CR), crack width, and corrosion potential of the steel reinforcement with copper tailing. This was achieved by conducting the constant-current accelerated corrosion test with different proportions of copper tailing in the brine environment of the Qinghai province. The results demonstrate that the corrosion potential (Ecorr) and the passivation area of the polarization curve decrease with the increase in the corrosion time, and the corrosion rate and crack width increase with the increase in the corrosion time. When the corrosion time is the same, the corrosion potential, crack width, and corrosion depth of the reinforcement decrease first and then increase with the increase in the copper tailing powder content. When the copper tailing powder content is 20%, the above parameters reach the minimum value. In the salt lake environment of Qinghai, China, the copper tailing powder content is recommended to be 20%.

8.
Sci Total Environ ; 650(Pt 1): 1392-1402, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308826

RESUMO

Our study assessed the actual water situation in the estuarine area of Lake Wuli, Meiliang Bay, Lake Taihu, China, based on eutrophication levels and status of water quality using the trophic level index (TLI) and water quality index (WQI) methods. In the wet (August 2017) and dry (March 2018) seasons, 22 estuarine areas were tested at 69 sampling sites, which included lake and rivers. Five parameters-chlorophyll a (Chl-a), total phosphorus (TP), total nitrogen (TN), Secchi disk (SD) and permanganate index (CODMn)-were measured to calculate the TLI, and 15 parameters-temperature (T), pH, electrical conductivity (EC), dissolved oxygen (DO), total dissolved solids (TDS), TN, TP, ammonium (NH4-N), nitrate (NO3-N), nitrite (NO2-N), CODMn, calcium (Ca2+), magnesium (Mg2+), chloride (Cl-) and phosphate (PO4-P)-were measured to calculate the WQI. The average TLI and WQI values in the wet season were 61.69 and 60.70, respectively, and the eutrophication level and water quality status were worse than that in the dry season (TLI: 57.40, WQI: 65.74). Significant differences were observed between three parts of Lake Wuli (West, Middle and East). Regardless of wet or dry season, East Wuli had worse eutrophication levels and water quality status than the other parts, whereas West Wuli showed less severe levels. DO, TN and CODMn used in the minimum WQI (WQImin) were the most effective parameters in our study. WQImin had stricter standards than WQI when analyzing water quality in the estuarine area of Wulihu. Factor analysis from principal component analysis (PCA) indicated that N might be the main factor affecting water quality of the most eastern sites in the wet season, and P may be the main factor in the dry season. Our results provide a valuable contribution to inform decision-making for the management of water environments by providing the actual water situation of the estuarine area of Lake Wuli.

9.
Sci Rep ; 7(1): 1164, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28442726

RESUMO

A 4-year field trial with three treatments and three types of annually rotated vegetables was conducted in calcareous soil in a greenhouse using a phosphorus (P) fractionation method based on the inorganic P fraction classification system described by Jiang-Gu. With the same nutrient input, vegetable yields and P uptake were more stable under the chemical fertilizer (CF) treatment than under the organic manure (OM) treatment, and the average utilization rate of P fertilizer (URP) values were 5.27% and 11.40% under the OM and CF treatments, respectively, over the 4 years. Compared with the values in 2009, the values of the inorganic P (Pi) fractionation, including Ca-P, Al-P and Fe-P, significantly increased over time by 310.89 mg·kg-1, 36.21 mg·kg-1, and 18.77 mg·kg-1, respectively, with OM treatment and by 86.92 mg·kg-1, 175.87 mg·kg-1, and 24.27 mg·kg-1 with CF treatment. These results suggest that 1) large amounts of P were released from Ca2-P, Ca8-P and Al-P and were taken up by vegetables in the calcareous soil, and 2) the excessive application of P fertilizer, especially OM, resulted in a substantial accumulation of Pi (Ca2-P, Ca8-P and Al-P), which increased the risk of pollution from organic farming diffusing into the surface water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...